HNF4alpha and HNF1alpha Dysfunction as a Molecular Rational for Cyclosporine Induced Posttransplantation Diabetes Mellitus

نویسندگان

  • Jürgen Borlak
  • Monika Niehof
چکیده

Posttransplantation diabetes mellitus (PTDM) is a frequent complication in immunosuppressive therapy. To better understand the molecular events associated with PTDM we investigated the effect of cyclosporine on expression and activity of hepatic nuclear factor (HNF)1alpha and 4alpha and on genes coding for glucose metabolism in cultures of the rat insulinoma cell line INS-1E, the human epithelial cell line Caco-2 and with Zucker diabetic fatty (ZDF) rats. In the pancreas of untreated but diabetic animals expression of HNF4alpha, insulin1, insulin2 and of phosphoenolpyruvate carboxykinase was significantly repressed. Furthermore, cyclosporine treatment of the insulinoma-1E cell line resulted in remarkable reduction in HNF4alpha protein and INS1 as well as INS2 gene expression, while transcript expression of HNF4alpha, apolipoprotein C2, glycerolkinase, pyruvatekinase and aldolase B was repressed in treated Caco-2 cells. Furthermore, with nuclear extracts of cyclosporine treated cell lines protein expression and DNA binding activity of hepatic nuclear factors was significantly repressed. As cyclosporine inhibits the calcineurin dependent dephosphorylation of nuclear factor of activated T-cells (NFAT) we also searched for binding sites for NFAT in the pancreas specific P2 promoter of HNF4alpha. Notably, we observed repressed NFAT binding to a novel DNA binding site in the P2 promoter of HNF4alpha. Thus, cyclosporine caused inhibition of DNA binding of two important regulators for insulin signaling, i.e. NFAT and HNF4alpha. We further investigated HNF4alpha transcript expression and observed >200-fold differences in abundance in n = 14 patients. Such variability in expression might help to identify individuals at risk for developing PTDM. We propose cyclosporine to repress HNF4alpha gene and protein expression, DNA-binding to targeted promoters and subsequent regulation of genes coding for glucose metabolism and of pancreatic beta-cell function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A transcription factor regulatory circuit in differentiated pancreatic cells.

Mutations in the human genes encoding hepatocyte nuclear factors (HNF) 1alpha, 1beta, 4alpha, and IPF1(PDX1/IDX1/STF1) result in pancreatic beta cell dysfunction and diabetes mellitus. In hepatocytes, hnf4alpha controls the transcription of hnf1alpha, suggesting that this same interaction may operate in beta cells and thus account for the common diabetic phenotype. We show that, in pancreatic i...

متن کامل

Epistasis of Transcriptomes Reveals Synergism between Transcriptional Activators Hnf1α and Hnf4α

The transcription of individual genes is determined by combinatorial interactions between DNA-binding transcription factors. The current challenge is to understand how such combinatorial interactions regulate broad genetic programs that underlie cellular functions and disease. The transcription factors Hnf1alpha and Hnf4alpha control pancreatic islet beta-cell function and growth, and mutations...

متن کامل

HNF4alpha Dysfunction as a Molecular Rational for Cyclosporine Induced Hypertension

Induction of tolerance against grafted organs is achieved by the immunosuppressive agent cyclosporine, a prominent member of the calcineurin inhibitors. Unfortunately, its lifetime use is associated with hypertension and nephrotoxicity. Several mechanism for cyclosporine induced hypertension have been proposed, i.e. activation of the sympathetic nervous system, endothelin-mediated systemic vaso...

متن کامل

RSK4 and PAK5 are novel candidate genes in diabetic rat kidney and brain.

The orphan hepatic nuclear factor (HNF) HNF4alpha is of pivotal importance for liver development and hepatocellular differentiation and plays an essential role in a regulatory circuitry to control a wide range of metabolic processes. It also targets genes in other organs, including pancreas, kidney, intestine, and colon; promotes expression of an epithelial phenotype; triggers de novo formation...

متن کامل

The G115S mutation associated with maturity-onset diabetes of the young impairs hepatocyte nuclear factor 4alpha activities and introduces a PKA phosphorylation site in its DNA-binding domain.

HNF4alpha (hepatocyte nuclear factor 4alpha) belongs to a complex transcription factor network that is crucial for the function of hepatocytes and pancreatic beta-cells. In these cells, it activates the expression of a very large number of genes, including genes involved in the transport and metabolism of glucose and lipids. Mutations in the HNF4alpha gene correlate with MODY1 (maturity-onset d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009